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BACKGROUND AND OBJECTIVES: Diagnosis of cerebrospinal fluid (CSF) shunt failure is complex, relying on a
combination of patient symptoms, history, and indirect tests, in part due to the inability to easily access information
about shunt function. The objective of this study was to evaluate the performance of a novel noninvasive wearable
wireless device in assessing the presence of shunt flow in patients presenting with possible shunt failure.
METHODS: This was a prospective validation study including patients with an existing implanted CSF shunt system and
symptoms of possible shunt failure. Subjects underwent evaluation with the study device in addition to standard-of-care
evaluation. Device measurement data were evaluated with 2 algorithms and classified as “flow confirmed” or “flow not
confirmed.” Subjects were followed for 7 days and, in patients undergoing shunt surgery, intraoperative assessment of
shunt functionality established the presence or absence of complete shunt failure. Additional subjects were enrolled for
user training and algorithm development.
RESULTS: In total, the study device was used on 182 subjects for user training, algorithm development, and validation.
The final algorithm validation data set included 112 subjects. The random forest algorithm outperformed the binary
threshold algorithm. The sensitivity of the random forest algorithm (correct identification of complete shunt failure) was
88.9%, and the specificity (correct identification of an absence of complete shunt failure) was 49.2% with a negative
predictive value of 96.8%.
CONCLUSION: This study established the performance of a first-generation wearable thermal anisotropy sensor in the
identification of CSF shunt flow in symptomatic patients. The high negative predictive value suggests potential ap-
plication to identify flowing shunts. Additional device performance and clinical outcome studies are underway.
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ABBREVIATIONS: NPV, negative predictive value; PPV, positive predictive value.
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BACKGROUND

The mainstay treatment for hydrocephalus and other cere-
brospinal fluid (CSF) disorders is placement of a permanent
ventricular CSF shunt. Although shunts can be lifesaving, they
have high failure rates with up to 85% of shunts failing within
10 years in children.1-3 This problem is compounded by difficulty
in diagnosing shunt failure as presenting symptoms are often
nonspecific,4-8 and existing tests can perform poorly and carry
risks associated with radiation, sedation, and infection.9-18

Imaging tests including X-ray shunt series, CT, and MRI are
currently used as front-line tests. However, X-ray shunt series have
low sensitivity (4%-27%)10,19-29 whereas CT and MRI have
sensitivities in the 50% to 80% range10,19,21,22,24-38 when used to
identify patients requiring shunt surgery. Radionucleotide shunt
studies report sensitivities >85%, but specificity is quite variable
between studies (43%-96%).14,15,39-43 In addition, radio-
nucleotide shunt studies are often used only after a negative CT or
MRI, are invasive, and can have long protocols.13-15,40

Objectives
Thermally mediated flow sensing techniques have shown

potential utility in the assessment of CSF flow through shunt
tubing.44-47 This study evaluated the performance of a wearable
device for noninvasively assessing CSF shunt flow using thermal
anisotropy measurements in a prospective study setting.

METHODS

Study Design
This was a prospective, blinded, multicenter observational study.

Setting
The study was conducted between August 2021 and November 2023

at 9 hospitals. The research protocol was approved by a central Insti-
tutional Review Board and by the Institutional Review Board at each
participating site. Informed consent was obtained before study device use.
Pediatric and adult subjects were enrolled for device user training and the
creation of algorithm development and validation data sets.

Participants
Before enrolling subjects for the algorithm development or validation

data sets, clinical staff were required to complete protocol and device user
training, including a roll-in study device measurement on a shunted
patient.

For the algorithm development and validation data sets, patients with
an existing implanted ventriculoperitoneal shunt who were experiencing
symptoms of potential shunt failure were recruited. Patients were in-
cluded if the shunt crossed the clavicle and there was a region of skin
appropriate in size for the study device.48 Patients were excluded if they
had more than 1 distal shunt catheter crossing the clavicle ipsilateral to the
shunt being measured, an interfering open wound or edema over any
portion of the shunt, a patient-reported history of adverse skin reactions

to adhesives, if participation in the study would interfere with, or be
detrimental to, administration of optimal health care to the subject, or if
the investigator determined the patient would likely be lost to follow-up.
No hydrocephalus etiologies were excluded.

Variables and Data Sources
The study device was used to assess shunt CSF flow. Subjects and the

medical staff were blinded to the results. Standard-of-care assessments of
shunt function were performed, and surgical intervention occurred solely
based on the judgment of the treating neurosurgeon. Subjects were
followed for 7 days to determine if shunt surgery occurred.

Study Device
Flow Evaluation

The study device is designed to provide noninvasive wireless assess-
ment of flow in implanted CSF shunts by thermal anisotropy mea-
surements. The study devices are investigational devices and are not
cleared/approved for use by the Food and Drug Administration. The
single-use device includes a low-power (44 mW) heating element, a set of
5 temperature sensors, a Bluetooth low-energy wireless chip, and a coin
cell battery enclosed in a flexible housing (Figure 1; the patient consented
to the publication of his/her images). It is similar in size to a conventional
adhesive bandage and communicates with an iPad application to perform
measurements and report results in <10 minutes. During the validation
study, a binary threshold algorithm was preloaded on the iPad and
provided real-time results to indicate if the measurement was completed
successfully or not. All raw measurement data were collected to support
offline analysis with a random forest algorithm.

Flow Identification Algorithms
Using the algorithm development data set, benchtop data, and other

clinical and nonclinical data, 2 algorithms were developed: a binary
threshold algorithm and a random forest algorithm. The binary threshold
algorithm is based on a 2-layer decision tree, with a threshold at each layer
based on the statistical distribution of a calculated thermal flow value in
the algorithm development data set. The random forest algorithm was
developed using a machine learning process to construct a more granular

FIGURE 1. Study device.
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decision tree using thermal flow features extracted from multiple time
points throughout the measurement and was further coupled with ad-
ditional feature analysis for vascular flow in the superior (cranial) di-
rection. Both algorithms were locked before the unblinding of the
validation data set. There was no significant overlap between the subjects
in the algorithm development and validation data sets, with only 1 subject
enrolled in both studies.

Instructions for Study Device Use
Users oriented subjects as close to an upright sitting position as possible.

The shunt tubing near the clavicle was palpated, and the location for device
placement was marked. The device was adhered to the skin, and the mea-
surement was initiated through the iPad application. Successfully completed
measurement results (“flow confirmed” or “flow not confirmed”) displayed on
the iPad as an encoded alphanumeric string. If data triggered an invalid
measurement using the binary threshold algorithm, the application displayed
troubleshooting steps to guide a new measurement. If a successful mea-
surement was not obtained, the subject’s measurement data were recorded as
incomplete, and the subject was considered a screening failure. Photograph(s)
were taken for device placement evaluation.

Ease-of-Use
For each patient, device users completed a survey covering 6 areas:

removing the device from the packaging, pairing the device and mobile
application, identifying and marking the catheter location, aligning the
sensor with the shunt catheter, using the mobile application and ob-
taining a device reading, and removing the device from the patient. The
device user indicated how strongly they agreed or disagreed with the
statement, “I was able to easily…” for each area. A composite score
including all 6 areas was computed.

Adverse Events
Patients were monitored for adverse events during the use of the study

device and up to 20 minutes afterward. For the purposes of this study,
patients were only monitored for newly diagnosed skin conditions at the
device application site.

Clinical Data
Ground Truth Determination

Shunt revision surgery was defined as any surgical intervention to
repair or replace an existing ventriculoperitoneal CSF shunt in whole or in
part, not including shunt taps, radionucleotide injections, or re-
programming of existing shunt valves. Intraoperative assessment of shunt
functionality established the presence or absence of a complete shunt
failure. A revision surgery with a complete shunt failure meant a shunt
revision surgery in which the surgeon visually confirmed shunt ob-
struction through a:

1. disconnected shunt,
2. complete lack of observable flow, or
3. complete distal obstruction when checked with a manometer.

All other shunt revision surgeries were categorized as being without a
complete shunt failure. The 7-day follow-up period began at the time of
study device use.

Subjects were classified as ground truth positive if they had a shunt
revision surgery with a complete shunt failure within the follow-up

period. Subjects were classified as ground truth negative if they had
either no shunt revision surgery performed or a shunt revision surgery
without a complete shunt failure within the follow-up period (Figure 2).

Additional Clinical Data
Additional clinical data included demographic data, hydrocephalus

characteristics, clinical setting, other shunt testing data (eg, imaging), and
symptomology as part of this study.

Bias
Bias was minimized through blinding of the device results.

Study Size
Enrollment in the validation study continued until the enrollment

target of 30 ground truth positive subjects was met.

Statistical Methods
The diagnostic performance of the 2 algorithms was assessed based on

measurement categorization as true positive, false positive, true negative,
or false negative (Figure 2). If a patient did not fall within one of these
categories (eg, due to an incomplete device measurement) or if the device
was incorrectly placed per the instructions for use, data for that subject
were not included in the performance calculations.

The performance measures sensitivity, specificity, accuracy, positive
predictive value (PPV), and negative predictive value (NPV) were esti-
mated along with 95% 2-sided CI. Diagnostic performance measures
were also calculated post hoc using an alternative workflow that combined
the random forest algorithm results with CT or MRI results (Figure 3).

Data Handling
This clinical trial was conducted in compliance with the protocol, good

clinical practice, and regulatory requirements. The study is registered on
clinicaltrials.gov (NCT05015751, NCT05432986).

RESULTS

Participants and Descriptive Data
Algorithm Development Data Set

Thirty-two patients were screened, 31 were enrolled, and 27
data sets, assessed to have high ground truth confidence, from 26
patients were used for algorithm development. An additional 10

FIGURE 2. Study device performance categorization relative to ground
truth definitions.
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FIGURE 3. Combined random forest algorithm and CT/MRI workflow. CT, computed tomography.

TABLE 1. Demographic Characteristics

Training (%) Validation (%)

Total subjects 36 (100) 128 (100)

Neonate (0-28 d) 0 (0.0) 0 (0.0)

Infant (29 d-1 y) 1 (2.8) 17 (13.3)

Child (2-11 y) 11 (30.55) 48 (37.5)

Adolescent (12-21 y) 11 (30.55) 46 (35.9)

Adult (≥22 y) 13 (36.1) 17 (13.3)

Age (median, y) 15 11

Minimum (y) 0 0

Maximum (y) 75 87

Sex

Male 13 (36.1) 52 (40.6)

Female 23 (63.9) 76 (59.4)

Ethnicity

Hispanic or Latino 9 (25.0) 18 (14.1)

Not Hispanic or Latino 26 (72.2) 107 (83.6)

Not available 1 (2.8) 3 (2.3)

Race

American Indian or Alaska Native 0 1 (0.8)

Asian 3 (8.3) 3 (2.3)

Black of African American 2 (5.6) 17 (13.3)

Native Hawaiian or other Pacific Islander 0 0 (0.0)

White 21 (58.3) 95 (74.2)

Other 8 (22.2) 2 (1.6)

Not available 2 (5.6) 10 (7.8)

Validation data set including subjects with incomplete measurements. Observed values are given as median, minimum, maximum, or number of subjects (%).
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data sets from 10 roll-in subjects were also used for a total of 37
algorithm development data sets. The median age of this cohort
was 15 years (range: 0-75 years). Children (0-21 years of age)
accounted for 63.9% of the subjects. Most subjects (63.9%) were
female, and 58.3% of subjects identified as White (Table 1).

Validation Data Set
One hundred twenty-nine patients were screened, and 128

were enrolled (Figure 4). The median age of this cohort was
11.0 years (range: 0-87 years). Children accounted for 86.7% of
the subjects, 59.4% of subjects were female, and the majority
(74.2%) identified as White (Table 1). The most common hy-
drocephalus etiologies were hemorrhage (31.3%) and spina bifida
(24.2%) (Table 2). The most common presenting symptoms were
headache (56.3%) and vomiting (51.6%). 81.3% of study device
measurements were taken in an emergency department or in-
patient setting (Table 2).
There were no withdrawals. Six subjects had incomplete study

device measurements using the binary threshold algorithm and
were categorized as screening failures. One hundred twenty-two
subjects had complete measurements (Figure 4).

Outcome Data
All validation data set subjects were categorized as ground truth

positive or negative. Shunt function was assessed intraoperatively
in all 47 subjects who had shunt surgery within 7 days of the
device measurement. Of these, 87.2% of shunt surgeries occurred
within 3 days and 30 were categorized as ground truth positive.
The device was incorrectly placed on 10 subjects, yielding a val-

idation data set of 112 subjects (Figure 4). Twenty-five subjects in the
final validation data set were ground truth positive for a complete shunt
failure (25/112, 22.3%). All other subjects (87/112, 77.7%), including
13 who had a shunt revision without a complete shunt failure and 2
who underwent shunt surgery but did not have shunt components
removed or replaced, were categorized as ground truth negative.

Main Results
Study Device Performance

The sensitivity of the study device using the random forest
algorithm was 88.9%, and the specificity was 49.2%. The ac-
curacy, PPV, and NPV of the device were 54.3%, 20.5%, and
96.8%, respectively. The no result rate was 37.5% (42/112)
because of incomplete measurements.

FIGURE 4. Enrollment for algorithm validation data set. VP, ventriculoperitoneal.
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The sensitivity of the study device using the binary threshold
algorithm was 28.0%, and the specificity was 59.8%. Lower
sensitivity in the binary algorithm was primarily due to the
misclassification of interfering vascular flow as CSF flow and the
reduced ability to identify shunt signals due to the limited feature
set used in the decision tree.
All device performance data including pediatric and adult

breakdowns are presented in Table 3. Meaningful comparisons
between the pediatric and adult performance data could not be
made due to the low counts for the adult cohort.

Other Analyses
Standard-of-Care Diagnostic Test Performance

Performance measures were also calculated for standard-of-care
tests used in the determination of complete shunt failure. 76.2%
of the subjects had ≥2 tests (range: 0-5) within ±48 hours of the
study device measurement. Performance data for the 4 most
frequent tests are presented in Table 4. CT (N = 81) had the
highest sensitivity (82.4%) and specificity (83.3%) (Table 4).

Random Forest Algorithm With Cranial Imaging
Given the high NPV using the random forest algorithm, the

data were analyzed post hoc to assess a possible use case in which
study device and CT or MRI results were used together as in
Figure 3.
In this use case, the sensitivity was 71.4% and the specificity

was 93.3%. The accuracy, PPV, and NPV of the combined
diagnostic tests were 91.0%, 55.6%, and 96.6%, respectively
(Table 3). 45% of subjects had a study device “flow confirmed”
output, whereas 55% had a “flow not confirmed” output.

Ease-of-Use
Overall, the device users “strongly agreed” or “agreed” with the

ease-of-use statements in 97.4% (748/768) of responses. There
were only 2 instances in which the study staff “strongly disagreed”
with a statement: once for the statement, “I was able to easily
remove the device from the packaging” and once for “I was able to

TABLE 2. Hydrocephalus and Presenting Characteristics

Validation (%)

Total subjects 128 (100)

Hydrocephalus etiologya

Myelodysplasia 2 (1.6)

Spina bifida 31 (24.2)

Encephalocele 0 (0.0)

Aqueductal stenosis 16 (12.5)

Dandy-Walker complex 2 (1.6)

Meningitis 3 (2.3)

Arachnoid cyst 3 (2.3)

Tumor 14 (10.9)

Infection 1 (0.8)

Hemorrhage 40 (31.3)

Traumatic brain injury 1 (0.8)

Other 18 (14.1)

Missing 4 (3.1)

Hydrocephalus type

Obstructive/noncommunicating 60 (46.9)

Nonobstructive/communicating 47 (36.7)

Missing 21 (16.4)

Presenting symptomsa

Seizure 10 (7.8)

Fever 13 (10.2)

Headache 72 (56.3)

Vision problems 10 (7.8)

Dizziness 5 (3.9)

Disorientation 4 (3.1)

Confusion 6 (4.7)

Vomiting 66 (51.6)

Lethargy 31 (24.2)

Irritability 19 (14.8)

Difficulty waking or staying awake 5 (3.9)

Swelling along shunt tract 6 (4.7)

Enlargement of head 1 (0.8)

Loss of balance 5 (3.9)

Gait disturbance 5 (3.9)

TABLE 2. Continued.

Validation (%)

Other symptom(s) 52 (40.6)

Study device measurement setting

Emergency department 27 (21.1)

Inpatient setting 77 (60.2)

Outpatient setting 24 (18.7)

aObserved values will not add up to 100%.
Validation data set including subjects with incomplete measurements.
Observed values are number of subjects (%).
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easily use the mobile app and obtain a device reading.” There were
10 instances in which the study staff “disagreed” with a statement.
Half of these instances were for the statement, “I was able to easily
use the mobile app and obtain a device reading.”

Adverse Events
There were 7 adverse events in 7 subjects of the 182 subjects in

which a study device measurement was attempted (inclusive of
subjects enrolled for device user training, algorithm development,
and algorithm validation). The adverse events were all skin ob-
servations of “redness” after device removal and resolved quickly.
There were no serious adverse events.

DISCUSSION

Key Results
The goal of this study was to establish the performance of a

noninvasive CSF shunt flow assessment device in a symptomatic

patient population. Using a random forest algorithm, the device
had a high sensitivity and NPV, similar to other flow detection
devices but with the benefits of being wireless and not requiring an
icepack.46,49 This performance stands in contrast to the moderate
sensitivity and high specificity demonstrated by standard-of-care
tools, such as CT and MRI.50 It is important to note that the
calculated sensitivity of CT and MRI in this study is higher than
those reported in the literature likely due to differences in the
ground truth definitions. The study data suggest that the study
device and random forest algorithmmay support shunt failure risk
stratification in a symptomatic population, especially when
combined with cranial imaging.

Limitations
Participants in this study were enrolled as a convenience sample

whichmay have over-represented pediatric cases. However, the subjects
represented a wide age range with many different hydrocephalus eti-
ologies. In addition, the shunt surgery rate (36.7%; 47/128) is within
the range published by others using larger sample sizes.20,21,25,30,51

TABLE 3. Performance of the Study Device

Algorithm Total TP FP TN FN
No

result Sensitivity Specificity Accuracy PPV NPV

Random forest

All 112 8 31 30 1 42 88.9 (68.4, 100.0) 49.2 (36.6, 61.7) 54.3 (42.6, 66.0) 20.5 (7.8, 33.2) 96.8 (90.6, 100.0)

Children (0-21) 99 7 28 25 1 38 87.5 (64.6, 100.0) 47.2 (33.7, 60.6) 52.5 (39.9, 65.0) 20.0 (6.7, 33.3) 96.2 (88.8, 100.0)

Adults (≥22) 13 1 3 5 0 4 100.0 (100.0, 100.0) 62.5 (29.0, 96.0) 66.7 (35.9, 97.5) 25.0 (0.0, 67.4) 100.0 (100.0, 100.0)

Binary threshold

All 112 7 35 52 18 — 28.0 (10.4, 45.6) 59.8 (49.5, 70.1) 52.7 (43.4, 61.9) 16.7 (5.4, 27.9) 74.3 (64.0, 84.5)

Children 99 6 33 42 18 — 25.0 (7.7, 42.3) 56.0 (44.8, 67.2) 48.5 (38.6, 58.3) 15.4 (4.1, 26.7) 70.0 (58.4, 81.6)

Adults 13 1 2 10 0 — 100.0 (100.0, 100.0) 83.3 (62.2, 100.0) 84.6 (65.0, 100.0) 33.3 (0.0, 86.7) 100.0 (100.0, 100.0)

Random forest with CT/MRI

All 112 5 4 56 2 45 71.4 (38.0, 100.0) 93.3 (87.0, 99.6) 91.0 (84.2, 97.9) 55.6 (23.1, 88.0) 96.6 (91.9, 100.0)

CT, computed tomography; FN, false negative; FP, false positive; NPV, negative predictive value; PPV, positive predictive value; TN, true negative; TP, true positive.
Values are given as number of subjects or percent (95% CI).

TABLE 4. Performance of Additional Tests

Total TP FP TN FN Sensitivity Specificity Accuracy PPV NPV

CT 83 14 11 55 3 82.4 (64.2, 100.0) 83.3 (74.3, 92.3) 83.1 (75.1, 91.2) 56.0 (36.5, 75.5) 94.8 (89.1, 100.0)

MRI 39 9 7 20 3 75.0 (50.5, 99.5) 74.1 (57.5, 90.6) 74.4 (60.7, 88.1) 56.3 (31.9, 80.6) 87.0 (73.2, 100.0)

Shunt series 93 7 0 69 17 29.2 (11.0, 47.4) 100.0 (100.0, 100.0) 81.7 (73.9, 89.6) 100.0 (100.0, 100.0) 80.2 (71.8, 88.6)

Shunt tap 15 1 4 7 3 25.0 (0.0, 67.4) 63.6 (35.2, 92.1) 53.3 (28.1, 78.6) 20.0 (0.0, 55.1) 70.0 (41.6, 98.4)

CT, computed tomography; FN, false negative; FP, false positive; NPV, negative predictive value; PPV, positive predictive value; TN, true negative; TP, true positive.
Values are given as number of subjects or percent (95% CI).
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The ground truth negative definition included a 7-day follow-up
period without a shunt revision surgery. Although this is not
equivalent to confirmation of shunt function, it is a well-established
criterion in the literature.9,15,16,19-22,24-29,31-37,42,43,46,49,52-54 The
ground truth positive definition included visual intraoperative as-
sessment. Although this definition is consistent with the study device
determination of “flow confirmed” or “flow not confirmed,” in
practice, CSF underdrainage without a complete absence of flowmay
warrant surgery and underscores the need for multiple tools to aid
surgical decision making.
Finally, because the random forest algorithm was not used

during data acquisition, an incomplete measurement, such as due
to determination of interfering vascular flow, could not be
remedied through sensor repositioning. This, along with incorrect
device placement, decreased the counts for data analysis. Addi-
tional studies using the random forest algorithm and user interface
improvements are currently underway to assess performance in
representative patient populations and additional care settings.

CONCLUSION

Interpretation
The study device is a wireless, noninvasive, easy-to-use sensor that

does not require capital equipment. Although not appropriate for use as
a stand-alone tool, the device’s high sensitivity andNPVdemonstrate its
substantial utility in the landscape of existing methods. Finally, use of
the device has minimal risk, with a low rate of mild adverse events and
no associated serious adverse events, and the device does not require
radiation or sedation as with other tools currently in use.

Generalizability
This multicenter study tested the clinical performance of a flow

detection device in symptomatic patients. The results are expected
to be broadly generalizable in this population; however, caution
must be used given the limitations discussed above.
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T he authors report the results of a multicenter trial assessing a
noninvasive method to confirm shunt function based on thermal

anisotropy with a small self-contained device and tablet-based, wireless
interface. Under the reported configuration, results are defined as ‘flow
confirmed’ or ‘flow not confirmed’. The device addresses a common
clinical conundrum—is the shunt working? As simple as this question
appears, it is often not simply answered. In absence of change in ven-
tricular caliber on axial imaging, accompanied by subtle clinical signs or
subjective symptoms, the decision to operate often relies on ancillary
testing (shunt tap, nuclear medicine flow study and others). Ideally, the
technology will advance and ultimately allow for determination func-
tional vs nonfunctional shunt—until then, it may provide an additional
data point to sort out which patients can safely avoid potentially un-
warranted surgical intervention.
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